• Separate Supply Voltage Pins for Isolation of Frequency Control Inputs and Oscillators from Output Circuity

• Highly Stable Operation over Specified Temperature and/or Supply Voltage Ranges

<table>
<thead>
<tr>
<th>DEVICE TYPE</th>
<th>SIMILAR TO</th>
<th>NUMBER OF VCO'S</th>
<th>COMP'L Z OUT</th>
<th>ENABLE INPUT</th>
<th>RANGE INPUT</th>
<th>P_ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>'LS24</td>
<td>'LS24</td>
<td>single</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>'LS25</td>
<td>'LS25</td>
<td>dual</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>'LS26</td>
<td>'LS26</td>
<td>dual</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>'LS27</td>
<td>'LS27</td>
<td>dual</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>'LS28</td>
<td>'LS28</td>
<td>single</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>'LS29</td>
<td>'LS29</td>
<td>dual</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

description

These voltage-controlled oscillators (VCOs) are improved versions of the original VCO family: SN54LS124, SN54LS125 thru SN54LS327, SN74LS124, and SN74LS324 thru SN74LS327. These new devices feature improved voltage-to-frequency linearity, range, and compensation. With the exception of the 'LS624 and 'LS628, all of these devices feature two independent VCOs in a single monolithic chip. The 'LS624, 'LS625, 'LS626, and 'LS628 have complementary Z outputs. The output frequency for each VCO is established by a single external component (either a capacitor or crystal) in combination with voltage-sensitive inputs used for frequency control and frequency range. Each device has a voltage-sensitive input for frequency control; however, the 'LS624, 'LS628, and 'LS629 devices also have one for frequency range. (See Figures 1 thru 6).

The 'LS628 offers more precise temperature compensation than its 'LS624 counterpart. The 'LS624 features a 600 ohm internal timing resistor. The 'LS628 requires a timing resistor to be connected externally across R_ext pins. Temperature compensation will be improved due to the temperature coefficient of the external resistor.

Figure 3 and Figure 6 contain the necessary information to choose the proper capacitor value to obtain the desired operating frequency.

A single 5-volt supply can be used; however, one set of supply voltage and ground pins (VCC and GND) is provided for the enable, synchronization-gating, and output sections, and a separate set (OSC VCC and OSC GND) is provided for the oscillator and associated frequency-control circuits so that effective isolation can be accomplished in the system. For operation of frequencies greater than 10 MHz, it is recommended that two independent supplies be used. Disabling either VCO of the 'LS625 and 'LS626 and 'LS627 can be achieved by removing the appropriate OSC VCC. An enable input is provided on the 'LS624, 'LS626, 'LS628, and 'LS629. When the enable input is low, the output is enabled; when the enable input is high, the internal oscillator is disabled. Y is high, and Z is low. Caution! Crossstalk may occur in the dual devices ('LS625, 'LS626, 'LS627 and 'LS629) when both VCOs are operated simultaneously. To minimize crossstalk, either of the following are recommended: (A) If frequencies are widely separated, use a 10-nH inductor between VCC pins. (B) If frequencies are closely spaced, use two separate VCC supplies or place two series diodes between the VCC pins.

The pulse-synchronization-gating section ensures that the first output pulse is neither clipped nor extended. The duty cycle of the square wave output is fixed at approximately 50 percent.

The SN54LS624 thru SN54LS629 are characterized for operation over the full military temperature range of -55 °C to 125 °C. The SN74LS624 thru SN74LS629 are characterized for operation from 0 °C to 70 °C.
SN54LS624 THRU SN54LS629, SN74LS624 THRU SN74LS629
VOLTAGE-CONTROLLED OSCILLATORS

logic diagram (positive logic)

logic symbols

† These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.
Pin numbers shown are for D, J, N, and V packages.
schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V_{CC} (see Notes 1 and 2) .. 7 V
Input voltage: Enable input† ... 7 V
Frequency control or range input‡ ... V_{CC}
Operating free-air temperature range: SN54LS' Circuits $-55^\circ C$ to $125^\circ C$
SN74LS' Circuits .. $0^\circ C$ to $70^\circ C$
Storage temperature range .. $-65^\circ C$ to $150^\circ C$

† The enable input is provided only on the 'LS624, 'LS626, 'LS628, and 'LS629.
‡ The range input is provided only on 'LS624, 'LS626, and 'LS629.

NOTE: 1. Voltage values are with respect to the appropriate ground terminal.
2. Throughout the data sheet, the symbol V_{CC} is used for the voltage applied to both the V_{CC} and OSC V_{CC} terminals, unless otherwise noted.
Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SN54LS*</th>
<th>SN74LS*</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply voltage, (V_{CC})</td>
<td>4.5 V</td>
<td>4.5 V</td>
<td>V</td>
</tr>
<tr>
<td>Input voltage at frequency control or range input, (V_{\text{IL}}) or (V_{\text{IH}})</td>
<td>0.8 V</td>
<td>0.8 V</td>
<td>V</td>
</tr>
<tr>
<td>High-level output current, (I_{OH})</td>
<td>–1.2 mA</td>
<td>–1.2 mA</td>
<td>mA</td>
</tr>
<tr>
<td>Low-level output current, (I_{OL})</td>
<td>17 nA</td>
<td>24 nA</td>
<td>mA</td>
</tr>
<tr>
<td>Output frequency, (f_0)</td>
<td>1 MHz</td>
<td>20 MHz</td>
<td>Hz</td>
</tr>
<tr>
<td>Operating free-air temperature, (T_A)</td>
<td>55 °C</td>
<td>70 °C</td>
<td>°C</td>
</tr>
</tbody>
</table>

Electrical Characteristics Over Recommended Operating Free-Air Temperature Range (Unless Otherwise Noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions†</th>
<th>SN54LS*</th>
<th>SN74LS*</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{IH}) High-level input voltage at enable#</td>
<td>(V_{CC} = \text{MIN.})</td>
<td>2 V</td>
<td>2 V</td>
<td></td>
</tr>
<tr>
<td>(V_{IL}) Low-level input voltage at enable#</td>
<td>(V_{CC} = \text{MIN.})</td>
<td>1.8 V</td>
<td>1.8 V</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IK}) Input clamp voltage at enable#</td>
<td>(V_{CC} = \text{MIN.})</td>
<td>–1.5 V</td>
<td>–1.5 V</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH}) High-level output voltage</td>
<td>(V_{CC} = \text{MIN.})</td>
<td>2.5 V</td>
<td>2.7 V</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL}) Low-level output voltage</td>
<td>(V_{CC} = \text{MIN.})</td>
<td>0.25 V</td>
<td>0.25 V</td>
<td>V</td>
</tr>
<tr>
<td>(I_I) Input current</td>
<td>(V_{CC} = \text{MAX.)})</td>
<td>50 μA</td>
<td>50 μA</td>
<td>μA</td>
</tr>
<tr>
<td>(I_I) Input current at maximum input voltage</td>
<td>(V_{CC} = \text{MAX.), } V_{I} = 7) V</td>
<td>40 μA</td>
<td>40 μA</td>
<td>μA</td>
</tr>
<tr>
<td>(I_{IH}) High-level input current</td>
<td>(V_{CC} = \text{MAX.)})</td>
<td>40 μA</td>
<td>40 μA</td>
<td>μA</td>
</tr>
<tr>
<td>(I_{IL}) Low-level input current</td>
<td>(V_{CC} = \text{MAX.)})</td>
<td>–0.8 μA</td>
<td>–0.8 μA</td>
<td>μA</td>
</tr>
<tr>
<td>(I_{OS}) Short-circuit output current$</td>
<td>(V_{CC} = \text{MAX.)})</td>
<td>–40 μA</td>
<td>–40 μA</td>
<td>μA</td>
</tr>
<tr>
<td>(I_{CC}) Supply current, total into (V_{CC}) and (V_{CCD}) pins</td>
<td>(V_{CC} = \text{MAX.)})</td>
<td>(\text{LS624})</td>
<td>(\text{LS625})</td>
<td>(\text{LS626})</td>
</tr>
</tbody>
</table>

\(^1 \) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

\(^2 \) All typical values are at \(V_{CC} = 5 \) V, \(T_A = 25^\circ \) C.

\(^3 \) Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

\(^4 \) The range input is provided only on the \(\text{LS624}, \text{LS626}, \text{and LS629} \).

\(^\# \) The enable input is provided only on the \(\text{LS624}, \text{LS626}, \text{LS627}, \text{and LS629} \).

NOTES:
3. \(V_{OH} \) for \(Y \) outputs and \(V_{OL} \) for \(Z \) outputs are measured while enable inputs are at \(V_{IL \text{MAX.}} \), with individual \(1 \) kΩ resistors connected from \(CX1 \) to \(V_{CC} \) and from \(CX2 \) to ground. The resistor connections are reversed for testing \(V_{OH} \) for \(Z \) outputs and \(V_{OL} \) for \(Y \) inputs.

4. For \(\text{LS624}, \text{LS626}, \text{LS628}, \text{and LS629}, \text{I}_{CC} \) is measured with the outputs disabled and open. For \(\text{LS625} \) and \(\text{LS627} \), \(\text{I}_{CC} \) is measured with one OSC \(V_{CC} = \text{MAX.} \), and with the other OSC \(V_{CC} \) and outputs open.
switching characteristics, $V_{CC} = 5 \text{ V}$ (unless otherwise noted), $R_L = 667 \Omega$, $C_L = 45 \text{ pF}$, $T_A = 25 ^\circ \text{C}$

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS</th>
<th>'LS624, 'LS626, 'LS627</th>
<th>'LS624, 'LS626, 'LS627</th>
</tr>
</thead>
</table>
| f_0 Output frequency | $C_{ext} = 50 \text{ pF}$ | \begin{tabular}{c|c|c|c|c|c}
$V(f_{\text{freq}}) = 5 \text{ V}$, $V(I_{\text{rng}}) = 0 \text{ V}$ & 15 & 20 & 25 & \hline
$V(f_{\text{freq}}) = 1 \text{ V}$, $V(I_{\text{rng}}) = 5 \text{ V}$ & 1.1 & 1.6 & 2.1 & \hline
$V(f_{\text{freq}}) = 5 \text{ V}$ & 7 & 9.5 & 12 & \hline
$V(f_{\text{freq}}) = 0 \text{ V}$ & 0.8 & 1.2 & 1.5 & \end{tabular} |

TYPICAL CHARACTERISTICS

'LS624, 'LS626, 'LS627

OUTPUT FREQUENCY

$V_{CC} = 5 \text{ V}$

$C_{ext} = 50 \text{ pF}$

$R_{ext} = 600 \Omega$ (‘LS628)

$T_A = 25 ^\circ \text{C}$

$V_I(f_{\text{freq}}) = \text{ Frequency-Control Input Voltage} \text{ - V}$

FIGURE 1

'LS624, 'LS626, 'LS627

OUTPUT FREQUENCY

$V_{CC} = 5 \text{ V}$

$C_{ext} = 15 \text{ pF}$

$R_{ext} = 600 \Omega$ (‘LS628)

$T_A = 25 ^\circ \text{C}$

$V_I(f_{\text{freq}}) = \text{ Frequency-Control Input Voltage} \text{ - V}$

FIGURE 2

\(^1\) Due to the effects of stray capacitance, the output frequency may be unstable when the frequency control voltage is less than 3 volts.
"TYPICAL CHARACTERISTICS

'LS624, 'LS626, 'LS629

OUTPUT FREQUENCY

VS

EXTERNAL CAPACITANCE

\[f_o = \frac{1}{2\pi C_{\text{ext}} f_{\text{osc}}^2} \]

\(f_o \) – Output Frequency – Hz

\(C_{\text{ext}} \) – External Capacitance – F

\(V_{\text{CC}} = 5 \text{ V} \)

\(T_A = 25^\circ \text{C} \)

\(V_{\text{f\text{(freq)}}} = 5 \text{ V}, V_{\text{f\text{(neg)}}} = 0 \text{ V} \)

\(V_{\text{f\text{(freq)}}} = 0 \text{ V}, V_{\text{f\text{(neg)}}} = 2.5 \text{ V} \)

\(V_{\text{f\text{(freq)}}} = 2.5 \text{ V} \)

\(V_{\text{f\text{(freq)}}} = 0 \text{ V} \)

FIGURE 3

'LS625, 'LS626, 'LS627

OUTPUT FREQUENCY

VS

FREQUENCY-CONTROL INPUT VOLTAGE

\[f_o = \frac{1}{2\pi C_{\text{ext}} f_{\text{osc}}^2} \]

\(f_o \) – Output Frequency – Hz

\(V_{\text{f\text{(freq)}}} \) – Frequency-Control Input Voltage – V

\(V_{\text{CC}} = 5 \text{ V} \)

\(C_{\text{ext}} = 50 \text{ pF} \)

\(T_A = 25^\circ \text{C} \)

FIGURE 4

'LS625, 'LS626, 'LS627

OUTPUT FREQUENCY

VS

EXTERNAL CAPACITANCE

\[f_o = \frac{1}{2\pi C_{\text{ext}} f_{\text{osc}}^2} \]

\(f_o \) – Output Frequency – Hz

\(V_{\text{f\text{(freq)}}} \) – Frequency-Control Input Voltage – V

\(V_{\text{CC}} = 5 \text{ V} \)

\(C_{\text{ext}} = 15 \text{ pF} \)

\(T_A = 25^\circ \text{C} \)

FIGURE 5

\(V_{\text{f\text{(freq)}}} = 5 \text{ V} \)

\(V_{\text{f\text{(freq)}}} = 2.5 \text{ V} \)

\(V_{\text{f\text{(freq)}}} = 0 \text{ V} \)

\(V_{\text{CC}} = 5 \text{ V} \)

\(T_A = 25^\circ \text{C} \)

FIGURE 6

\(^* \) Due to the effects of stray capacitance the output frequency may be unstable when the frequency control voltage is less than 1 volt.
TYPICAL CHARACTERISTICS

ENABLE TIME

VS

FREQUENCY

\[V_{CC} = 5 \text{ V} \]
\[T_A = 25^\circ \text{C} \]

\[\text{f}_0 - \text{Output Frequency - MHz} \]

\[t_{en} - \text{Enable Time - ns} \]

FIGURE 7

TYPICAL APPLICATIONS DATA

\[f_0 = \frac{N}{M} f_1 \]

\[C_{ext} \]

\[H^2 \]

\[\text{FREQ CONT} \]

\[\text{VCO} \]

\[Y \]

\[f_1 \]

\[M \text{ or } K_M \]

\[\text{PHASE COMPARATOR} \]

\[f_0/N \]

\[\text{LOW PASS FILTER} \]

\[f_0 \]

\[Y \]

\[C_{ext} \]

\[\text{FREQ CONT} \]

\[\text{EN} \]

\[H^3 \]

\[\text{RNG}^1 \]

\[\text{L} \]

\[\text{EN}^2 \]

\[f_0 \]

\[\text{fo} \]

\[(\text{or } K_N) \]

\[1 \]

\[0 \]

\[V \]

\[1.3 \text{ V} \]

\[0 \text{ V} \]

\[1.3 \text{ V} \]

\[3 \text{ V} \]

1 The range input is provided only on the LS624, LS628, and LS629.

2 The enable input is provided only on the LS624, 7LS628, LS628, and LS629.

3 Input voltages may be variable (analog) depending upon application.

FIGURE A--PHASE-LOCKED LOOP

TEXAS INSTRUMENTS

POST OFFICE BOX 655212 - DALLAS, TEXAS 75222
IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated
IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated